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An evolutionary behavioral model for
decision making

Oscar Javier Romero López

Abstract
For autonomous agents the problem of deciding what to do next becomes increasingly complex when acting in unpre-
dictable and dynamic environments while pursuing multiple and possibly conflicting goals. One of the most relevant
behavior-based models that tries to deal with this problem is the behavior network model proposed by Maes. This model
proposes a set of behaviors as purposive perception–action units that are linked in a nonhierarchical network, and
whose behavior selection process is orchestrated by spreading activation dynamics. In spite of being an adaptive model
(in the sense of self-regulating its own behavior selection process), and despite the fact that several extensions have been
proposed in order to improve the original model adaptability, there is not yet a robust model that can self-modify adap-
tively both the topological structure and the functional purpose of the network as a result of the interaction between
the agent and its environment. Thus, this work proposes an innovative hybrid model driven by gene expression program-
ming, which makes two main contributions: (1) given an initial set of meaningless and unconnected units, the evolution-
ary mechanism is able to build well-defined and robust behavior networks that are adapted and specialized to concrete
internal agent’s needs and goals; and (2) the same evolutionary mechanism is able to assemble quite complex structures
such as deliberative plans (which operate in the long-term) and problem-solving strategies. As a result, several properties
of self-organization and adaptability emerged when the proposed model was tested in a robotic environment using a
multi-agent platform.

Keywords
Intelligent and autonomous agents, evolutionary computation, gene expression programming, behavior networks, adap-
tive behavior, automated planning

1 Introduction

An autonomous agent is a self-contained program that
is able to control its own decision-making process, sen-
sing and acting autonomously in its environment, and
by doing so realize a set of goals or tasks for which it is
designed. Usually these goals and tasks change dynami-
cally through time as a consequence of internal and
external (environmental) perturbations and, ideally, the
agent should adapt its own behavior to these perturba-
tions. Maes (1989, 1990, 1992) proposed a model for
building such an autonomous agent that includes a
mechanism for action selection (MASM) in dynamic
and unpredictable domains, based on so-called beha-
vior networks. This model specifies how the overall
problem can be decomposed into subproblems, that is,
how the construction of the agent can be decomposed
into the construction of a set of component modules
(behaviors) and how these modules should be made to
interact. The total set of modules and their interactions
provide an answer to the question of how the sensor
data and the current internal state of the agent

determine the actions (effector outputs) and future
internal state of the agent through an activation
spreading mechanism that determines the best behavior
to be activated in each situation. In addition, this
model combines characteristics of both traditional
planners and reactive systems: it produces fast and
robust activity in a tight interaction loop with the envi-
ronment, while at the same time allowing for some pre-
diction and planning to take place.

Although original Maes networks do work in con-
tinuous domains, they do not exploit the additional
information provided by continuous states. Similarly,
though there are mechanisms to distinguish different
types of goals in MASM, there are no means to sup-
port goals with a continuous truth state (such as ‘‘have
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stamina’’) to become increasingly demanding the less
they are satisfied. In regard to this, some extensions to
the original behavior network model have been pro-
posed (Dorer, 1999, 2004).

One of the most relevant weakness of the original
Maes model is that the whole network model is fixed. It
therefore requires both the network structure (e.g.,
spreading activation links) and global parameters of the
network that define the characteristics of a particular
application (e.g., goal-orientedness vs. situation-orient-
edness, etc.) to be pre-programmed, and hence the
agent has no complete autonomy over its own decision-
making process. In order to resolve this problem, Maes
(1991) proposed two mechanisms depending on real-
world observations: a learning mechanism for adding/
deleting links in the network, and an introspection
mechanism for tuning global parameters. The main
problem with the former is that it does not use a real
machine learning algorithm, but rather a simple statisti-
cal process based on observations, so many hand-coded
instructions are still required. With respect to the latter,
it proposes a meta-network (another behavior network)
that controls the global parameter variation of the first
network through time, but the problem still remains:
who is in charge of dynamically adapting the global
parameters of the meta-network? It seems to be similar
to the well-known homunculus problem of cognitive
psychology; or, in colloquial terms, the Russian nested
dolls (matryoska dolls) effect.

This work proposes a novel model based on gene
expression programming (GEP; Ferreira, 2001) that,
on the one hand, allows the agent to self-configure both
the topological structure and the functional characteri-
zation of each behavior network without losing the
required expressiveness level; and, on the other hand,
allows the agent to build more complex decision-
making structures (e.g., deliberative plans and problem
solving strategies) from the assembly of different kinds
of evolved behavior networks. In contrast to the beha-
vior network extensions mentioned above, this
approach confers a high level of adaptability and flexi-
bility, always producing, as a consequence, syntacti-
cally and semantically valid behavior networks.

The remainder of this article is organized as fol-
lows. Section 2 outlines the operation of the behavior
network model. Section 3 explains in detail how the
behavior network model is extended using GEP.
Section 4 illustrates the plan-extracting process using
GEP. Section 5 outlines and discusses the results of
the experiments. The concluding remarks are given in
Section 6.

2 Behavior networks model

In the following, we describe the behavior network
formalism. Since we do not need the full details for our

purposes, the description will be sketchy and informal
at some points.

A behavior network (BN) is a mechanism proposed
by Maes (1989) as a collection of competence modules
that work in a continuous domain. Action selection is
modeled as an emergent property of an activation =
inhibition dynamics among these modules. A behavior
i can be described by a tuple hci, ai, di, aii. ci is a list of
preconditions which have to be fulfilled before the
behavior can become active and e = t(ci, s) is the execut-
ability of the behavior in situation s where t(ci, s) is the
(fuzzy) truth value of the precondition in situation s. ai

and di represent the expected (positive and negative)
effects of the behavior’s action in terms of an add list
and a delete list. Additionally, each behavior has a level
of activation ai. If the proposition X about environ-
ment is true and X is in the precondition list of the
behavior A, there is an active link from state X to action
A. If goal Y has an activation greater than zero and Y is
in the add list of behavior A, there is an active link from
goal Y to action A.

Internal links include predecessor links, successor
links, and conflicter links. There is a successor link
from behavior A to behavior B (A has B as successor)
for every proposition p that is a member of the add list
of A and also a member of the precondition list of B (so
more than one successor link between two competence
modules may exist). A predecessor link from module B

to module A (B has A as predecessor) exists for every
successor link from A to B. There is a conflicter link
from module A to module B (B conflicts with A) for
every proposition p that is a member of the delete list
of B and a member of the precondition list of A. The
following is the procedure to select an action to be exe-
cuted at each step:

1. Calculate the excitation coming in from the envi-
ronment and the goals.

2. Spread excitation along the predecessor, succes-
sor, and conflicter links, and normalize the beha-
vior activations so that the average activation
becomes equal to the constant p.

3. Check any executable behaviors, choose the one
with the highest activation, execute it, and finish.
A behavior is executable if all the preconditions
are true and if its activation is greater than the
global threshold. If no behavior is executable,
reduce the global threshold and repeat the cycle.

Additionally, the model defines five global para-
meters that can be used to ‘‘tune’’ the spreading activa-
tion dynamics of the BN and thereby affect the
operation of the behavior network:

1. p: the mean level of activation.
2. u: the threshold for becoming active. u is lowered

by 10% each time none of the modules could be
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selected. It is reset to its initial value when a mod-
ule could be selected.

3. f: the amount of activation energy a proposition
that is observed to be true injects into the network.

4. g: the amount of activation energy a goal injects
into the network.

5. d: the amount of activation energy a protected
goal takes away from the network.

In the following section, we describe how the BN
topology can be evolved in order to adapt to continu-
ously changing goals and states of the environment. An
approach to how complex decision-making structures
(e.g., deliberative plans) can emerge from the interac-
tion of multiple evolved BNs, is also presented.

3 Evolutionary behavior networks

We propose an extended version of Maes’ model,
described above, that incorporates more sophisticated,
rational, and complex processing modules than the sim-
ple state machines proposed by Maes.1 In addition, it
incorporates an evolutionary mechanism addressed by
gene expression programming (GEP; Ferreira, 2001) in
charge of evolving the BN topology, namely, the acti-
vation = inhibition links among behaviors, the precon-
ditions of each behavior, and the algorithm’s global
parameters. This section explains how the chromo-
somes of GEP can be modified so that a complete
BN—including the architecture, the activation/inhibi-
tion links, and the global parameters—can be totally
encoded by a linear chromosome, even though it may
be expressed as a nonlinear structure such as an expres-
sion tree. It is also shown how this chromosomal orga-
nization allows the adaptation of the network using the
evolutionary mechanisms of selection and modifica-
tion, thus providing an approach to the automatic
design of BNs.

The main reason we have used GEP, instead of typi-
cal genetic programming (GP) or other kinds of evolu-
tionary algorithms (e.g., genetic algorithms, GA), as a
behavior–network evolutionary mechanism is due to its
powerful and robust capability of always creating com-
plex and meaningful structures. The fundamental dif-
ference between the three algorithms resides in the
nature of the individuals: in GA the individuals are
symbolic strings of fixed length (chromosomes); in GP
the individuals are nonlinear entities of different sizes
and shapes (parse trees); and in GEP the individuals
are encoded as symbolic strings of fixed length (chro-
mosomes), which are then expressed as nonlinear enti-
ties of different sizes and shapes (expression trees).
Thus, the structural and functional organization of
GEP genes always guarantees the production of valid
solutions, no matter how much or how profoundly the
chromosomes are modified.

3.1 Genetic encoding of behavior networks

The network architecture is encoded in the familiar
structure of a head and tail (Poli, Langdon, & McPhee,
2008). The head contains special functions that activate
the units, and terminals that represent the input units.
The tail contains only terminals. Let us now analyze an
example of how the BN is encoded into a GEP
chromosome.

In Figure 1a, a linear multigenic chromosome is ini-
tially generated in a random way and then modified by
genetic operators. Each multigenic chromosome defines
several behavioral genes and just one functional gene.
Each behavioral gene encodes a different behavior’s
structure, whereas the functional gene encodes the glo-
bal parameters of the BN. We propose a multigenic
chromosomal structure, which is more appropriate for
evolving good solutions to complex problems because
it permits the modular construction of complex, hier-
archical structures, where each gene encodes a smaller
and simpler building block (a behavior). These building
blocks are physically separated from one another and
thus can evolve independently. Not surprisingly, these
multigenic systems are much more efficient than uni-
genic ones (Ferreira, 2000). The details of the encoding
process will be explained later.

The multigenic chromosome can then be translated
into the whole expression tree shown in Figure 1b
through the conversion process described by Poli et al.
(2008) and Ferreira (2006). Here, it is possible to iden-
tify three kinds of functions: B, D, and T. The B func-
tion is used for representing each behavior of the net,
and it has an arity of three: the first branch is a set of
preconditions, the second is a set of activation links
that connects to other behaviors, and the third is a set
of inhibition links that connects to other behaviors
(dashed arrows). For example, behavior B3 is activated
when behavior B2 makes true precondition P4. After
that, it spreads activation energy to behavior B1

through precondition P5, and spreads inhibitory energy
to behavior B2 through precondition P3. The D and T

functions are connectivity functions that join two or
three elements, respectively, of the same nature (e.g.,
behaviors, preconditions, goals, etc.). Note that the
expression tree is composed of several subexpression
trees (sub-ETs), each one representing the structure of
a unique behavior in the net; hence each sub-ET has a
particular organization that is encoded into one sepa-
rate behavioral gene, and the whole expression tree
(ET) models the entire behavior network.

Figure 1c depicts a basic BN with three behaviors
(B1, B2, and B3), where the solid arrows denote excita-
tory activation connections and the dashed arrows
denote inhibition connections between behaviors. P1,
P2, P3, P4, and P5 denote the preconditions for beha-
viors. In order to simplify the picture, each behavior
only defines a few preconditions. However, in the real
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implementation the preconditions set for each behavior
might be composed of a subset of sensory inputs (inter-
nal and external), a subset of active working memory
elements, a subset of current subgoals, and a subset of
motivational states (drives, moods, and emotions). G1

is an agent’s global goal pursued by behavior B1.
In the example in Figure 1a, for each behavioral

gene, positions from 0 to 3 encode the head domain (so
both functions and terminals are allowed), and posi-
tions from 4 to 12 encode the tail domain (where only
terminals are allowed). Because each behavior defines
variable sets of preconditions, activation links, and
inhibition links, the corresponding genetic encoding
spans along regions of different sizes into the beha-
vioral gene. Those regions are called open reading
frames (ORF; Ferreira, 2001). In GEP, what changes is
not the length of genes, but rather the length of the
ORF. Indeed, the length of an ORF may be equal to or
less than the length of the gene. The noncoding regions
are the essence of GEP and evolvability, because they
allow the modification of the genome using all kinds of
genetic operators without any kind of restriction. In
fact, genetic operators can work on both regions (ORF
and noncoding regions), always producing syntactically
correct behavior networks.

Each sub-ET can be generated straightforwardly
from chromosomal representation as follows: first, the
start of a gene corresponds to the root of the sub-ET,
forming this node in the first line; second, depending
on the number of arguments to each element (functions
may have a different number of arguments, whereas
terminals have an arity of zero), in the next line are
placed as many nodes as there are arguments to the
functions in the previous line; third, from left to right,
the nodes are filled, in the same order, with the ele-
ments of the gene; and fourth, the process is repeated
until a line containing only terminals is formed.

Because the process is bidirectional, inversely each
behavioral gene can be easily inferred from the corre-
sponding sub-ET as follows: the behavior function (B)
of the sub-ET is encoded, and the algorithm then makes
a straightforward reading of the sub-ET from left to
right and from top to bottom (exactly as one reads a
page of text). For instance, the sub-ET for behavior B1

is encoded as: B1-D-G1-P2-P1-P5, and this is the ORF
of its corresponding behavioral gene (i.e., the shadowy
region for this gene in Figure 1).

The functional gene encodes an additional domain
called Dp, which represents the global parameters of the
BN. For the functional gene, position 0 encodes p (the

Figure 1. GEP translation of a behavior network.
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mean level of activation), position 1 encodes u (the
threshold for becoming active), position 2 encodes f

(the amount of energy for preconditions), position 3
encodes d (the amount of energy for protected goals),
and position 4 encodes g (the amount of energy for
goals). The values of global parameters are kept in an
array and are retrieved as necessary. The number repre-
sented by each position in the parameters domain indi-
cates the order in the array Dp. For example, position 0
in the functional gene (p) encapsulates the index ‘‘4’’
which corresponds to the value 92 in the Dp array (in
bold), and so on. For simplicity, Figure 1 only shows
an array of 10 elements for parameter domain Dp, but
in the implementation we use an array of 100 elements,
where each position encodes one numeric value between
0 and 100. Genetic operators guarantee that global
parameters are always generated inside the domain of
the Dp array.

3.2 Special genetic operators

The evolution of such complex entities composed of
different domains and different alphabets requires a
special set of genetic operators so that each domain
remains intact. The operators of the basic gene expres-
sion algorithm (Ferreira, 2001) are easily transposed to
behavior-net encoding chromosomes, and all of them
can be used provided the boundaries of each domain
are maintained so that alphabets are not mixed up.
Mutation was extended to all the domains so that every
different gene (behavioral or functional) was modified
following its respective domain constraints (e.g., not
replacing terminal nodes by function nodes in the tail
region, etc.). Insertion sequence (IS) and root insertion
sequence (RIS) transposition were also implemented in
behavioral genes and their action is obviously restricted
to heads and tails. In the functional gene we define only
an IS operator (because the RIS operator is not appli-
cable here) that works within the Dp domain, ensuring
the efficient circulation of global parameters in the pop-
ulation. Another special operator, parameters’ muta-
tion, was also defined in order to directly introduce
variation in the functional gene (i.e., global parameters
region), selecting random values from the Dp array.

The extension of recombination and gene transposi-
tion to GEP-nets is straightforward, as their actions
never result in mixed domains or alphabets. However,
for them to work efficiently (i.e., allow an efficient
learning and adaptation), we must be careful in deter-
mining which behavior’s structure elements and=or glo-
bal parameters go to which region after the splitting of
the chromosomes, otherwise the system is incapable of
evolving efficiently. In the case of gene recombination
and gene transposition, keeping track of behavioral
and functional genes is not a difficult task, and these
operators work very well in GEP-nets. But in one-point
and two-point recombination where chromosomes can

be split anywhere, it is impossible to keep track of the
behavior’s structure elements and global parameters. In
fact, if applied straightforwardly, these operators
would produce such large evolutionary structures that
they would be of little use in multigenic chromosomes
(Ferreira, 2006). Therefore, for our multigenic system,
a special intragenic two-point recombination was used
so that the recombination was restricted to a particular
gene (instead of interchanging genetic material with
other kinds of genes in the chromosome).

In summary, in order to guarantee the generation of
valid BNs, all genetic operators have to comply with
the following constraints:

� In the first position of behavioral genes, only a B
(behavior) node can be inserted.

� For the head region in behavioral genes:
— Mutation only by connectivity functions (D

and T ), and by terminals such as precondi-
tions (Pn) and goals (Gn).

— Transposition (IS and RIS) and one-point
and two-point recombination operators
must follow the same syntactic validations
as the mutation operator.

� For the tail region in behavioral genes:
— Terminals can only be mutated, transposed,

and recombined using elements from the tail
domain, such as preconditions (Pn) and goals
(Gn). No syntactic validations are required.

� For global parameters in the functional gene:
— Terminals can only be mutated, transposed,

and recombined using numeric values from
parameters domain Dp, that is, numeric val-
ues between 0 and 100. No additional syn-
tactic validations are required.

Finally, for each behavioral gene, the length of the
head h is chosen depending on the problem domain
(e.g., for the experiments we used h = 10). This para-
meter allows at least the encoding of all behaviors set.
On the other hand, the length of the tail t is a function
of both h and the number of arguments n of the func-
tion with more arguments (also called maximum arity),
and is evaluated by Equation 1:

t = h(n� 1) + 1 ð1Þ

In our case, n = 3 because this is the maximum arity for
functions B and T . If we define h = 10, then t = 20, so the
maximum fixed length for each behavioral gene is 30,
and for the functional gene it is 5 (the maximum num-
ber of global parameters).

3.3 Fitness functions for BN chromosomes

In this section we describe how behavior-network chro-
mosomes are evaluated so that they have higher or
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lower probability of being replicated in the next genera-
tion of the evolutionary process. For the fitness evalua-
tion we have taken into account the theorems proposed
by Nebel and Babovich-Lierler (2004) and, addition-
ally, we have identified a set of necessary and sufficient
conditions that make behavior networks goal conver-
ging. Note that all reinforcement parameters used in
the next fitness functions are self-generated by the sys-
tem from changes observed in the agent’s internal
states, so that they do not require a priori or manual
adjustment made by a designer.

We first define two fitness functions: one evaluates
how well defined the behavior-network structure is,
and the other evaluates the efficiency and functionality
of the behavior network. First, the fitness function for
evaluating the behavior-network structure is

FFSi = Ai + Bi + Ci + Di + Ei + Fi, ð2Þ

where i is a chromosome encoding a specific BN, and
each term is defined as follows.

Ai: Is there at least one behavior of the net accom-
plishing a goal? such that

A =
a1, if 9 beh 2 i j abeh \ G(t) 6¼ ;
a2, otherwise

�
ð3Þ

where beh is any behavior of the network, abeh is the
add list of beh, G(t) is a set of global goals, a1 is a posi-
tive reinforcement (by default 100), and a2 is a negative
reinforcement (by default �100).

Bi: Are all behaviors of the net well connected? such
that

B = ncp � b1 + nup � b2, ð4Þ

where ncp is the number of behaviors correctly con-
nected to others through successor and predecessor
links (self-inhibitory connections are incorrect), nup is
the number of unconnected behaviors (no propositions
at either add list or delete list), b1 is a positive reinforce-
ment (by default + 10), and b2 is a negative reinforce-
ment (by default �20).

Ci: Are there any deadlock loops defined by the BN?
such that

C =
(np � c1) + (nnp � c2), if the BN

has associated a global goal
c3, otherwise

8<
:

ð5Þ

where np is the number of behaviors that define at least
one path connecting to the global goal, c1 is a positive
reinforcement (by default + 20), nnp is the number of
behaviors without a path between them and the global
goal, c2 is a negative reinforcement (by default �10),
and c3 is another negative reinforcement (by
default �50).

Di: Are all propositions (preconditions, add list, and
delete list) of each behavior unambiguous? (e.g., the
precondition set is ambiguous if it has propositions p

and �p at the same time) such that

D =
Xk

i = 0

(nna � d1) + (na � d2), ð6Þ

where k is the total number of behaviors (behavioral
genes) of the BN, nna is the number of propositions
that are not ambiguous, d1 is a positive reinforcement (by
default + 10), na is the number of ambiguous proposi-
tions, and d2 is a negative reinforcement (by default
�20).

Ei: Are all add-list propositions non-conflicting?
(e.g., a proposition that appears both in the add list
and in the delete list—for the same behavior—is a con-
flicting proposition), such that

E =
Xk

i = 0

(nnca � e1) + (nca � e2), ð7Þ

where k is the total number of behaviors of the BN, nnca

is the number of non-conflicting add-list propositions,
e1 is a positive reinforcement (by default + 10), nca is
the number of conflicting add-list propositions, and e2

is a negative reinforcement (by default �20).
Fi: Are all delete-list propositions non-conflicting?

(e.g., a proposition that appears both in the precondi-
tions set and in the delete list—for the same behavior—
is a conflicting proposition), such that:

F =
Xk

i = 0

(nncd � f 1) + (ncd � f 2), ð8Þ

where k is the total number of behaviors of the BN,
nncd is the number of non-conflicting delete-list proposi-
tions, f 1 is a positive reinforcement (by default + 10),
ncd is the number of conflicting delete-list propositions,
and f 2 is a negative reinforcement (by default �20).

Second, the fitness function for evaluating network
functionality is:

FFEi = Gi + Hi + Ii + Ji + Li + Mi + Ni, ð9Þ

where i is a chromosome encoding a specific BN, and
each term is defined as follows.

Gi: This term determines if g (the amount of energy
for goals) is a well-defined parameter. Because the para-
meter g must reflect the ‘‘goal-orientedness’’ feature of
the BN,

G =
100� g1, if(RfreqG.0 ^ Rg.0)_

(RfreqG\0 ^ Rg\0)
g2, otherwise

8<
: ð10Þ
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where RfreqG is the absolute variation rate which deter-
mines how often a goal is activated or reactivated by
the internal agent’s motivational subsystem. Therefore

RfreqG =
freqGcur � freqGpri

freqGcur

, ð11Þ

where freqGcur is a frequency indicating how many
goals are activated in the current state, and freqGpri is a
frequency indicating how many goals were activated in
a prior state. Rg is the absolute variation rate for para-
meter g:

Rg =
gcur � gpri

gcur

, ð12Þ

where gcur is the value for g in the current state, and
gpri is the value of g in the prior state. Finally, g1 is the
absolute difference among the variation rates:
g1 = j RfreqG � Rg j ; and g2 is a negative reinforcement
(by default �100). Intuitively, when the frequency of
activated goals increases over time, the global para-
meter g should increase proportionally too.

Hi: This term determines if f (the amount of energy
for preconditions) is a well-defined parameter. Because
the parameter f must reflect the ‘‘situation relevance’’
and ‘‘adaptivity’’ features of the BN,

H =

100� h1, if(RfreqC.0 ^ Rf.0) _ (RfreqC\0 ^ Rf\0)
h2, otherwise

�

ð13Þ

where h1 is the absolute difference among the absolute
variation rates; h1 = j RfreqC � Rf j . RfreqC is a variation
rate (between current and prior states) that determines
how often the environmental perturbations are per-
ceived by the agent. Rf denotes the absolute variation
rate for parameter f and h2 is a negative reinforcement
(by default �100). Note that the absolute variation
rates are treated similarly as in the term G.

Ii: This term determines if p (the mean level of acti-
vation) is a well-defined parameter. Because the para-
meter p must reflect the ‘‘adaptivity’’ and ‘‘bias to
ongoing plans’’ features of the BN,

I =
100� i 1, if(RfreqSG.0 ^ Rp.0)_

(RfreqSG\0 ^ Rp\0)
i2, otherwise

8<
: ð14Þ

where i1 is the absolute difference among the
absolute variation rates; i1 = j RfreqSG � Rp j . RfreqSG

is a variation rate (between a current and prior states)
that determines the activation frequency of the sub-
goals set that are associated to a current global goal.
Rp denotes the absolute variation rate for parameter
p and i2 is a negative reinforcement (by default
�100). Absolute variation rates are treated similarly

as in the term G. Intuitively, if the environment
requires the agent to address its actuation to the
achievement of a hierarchical set of goals, the BN
must increase the value of p through time; otherwise,
if the environment is quite dynamic and an adaptive
behavior is required, the parameter p should
decrease.

Ji: This term determines if d (the amount of energy
for protected goals) is a well-defined parameter.
Because the parameter d must reflect the ‘‘avoiding
goal conflicts’’ feature of the BN,

J =
100� j1, if(Rauto.0 ^ Rd\0) _ (Rauto\0 ^ Rd.0)
j2, otherwise

�

ð15Þ

where j1 is the absolute difference between the absolute
variation rates; j1 = j Rauto � Rd j . Rauto is the absolute
variation rate for the number of self-referenced loops
identified by the agent between current and prior states
(e.g., when the system identifies a circular reference of
behavior activation such as: a! b, b! c, c! a). Rd

denotes the absolute variation rate for parameter d and
j2 is a negative reinforcement (by default �100).
Intuitively, if Rauto increases, then Rd should decrease
proportionally, and vice versa.

Li: This term determines if u (the threshold for becom-
ing active) is a well-defined parameter. Because the para-
meter u must reflect the ‘‘bias to ongoing plans,’’
‘‘deliberation,’’ and ‘‘reactivity’’ features of the BN,

L =

100� l1, if(RfreqCE.0 ^ Ru\0) _ (RfreqCE\0 ^ Ru.0)
l2, otherwise

�

ð16Þ

where l1 is the absolute difference among the absolute
variation rates; l1 = j RfreqCE � Ru j . RfreqCE is the abso-
lute variation rate for the number of changing environ-
mental elements between current and prior states (e.g.,
novel objects coming into the perception field, or per-
ceived objects that change physically, etc.). Ru denotes
the absolute variation rate for parameter u and l2 is a
negative reinforcement (by default �100). Intuitively, if
RfreqCE increases (i.e., the environment is more
dynamic), then Ru should decrease proportionally
(making the BN more reactive); but if RfreqCE decreases,
then Ru should increase in order to make the BN more
deliberative.

Mi: This term validates the add-list efficiency of
each behavior. If the current state includes a percept
that corresponds to any add-list’s proposition of any
behavior, the behavior will receive a positive reinfor-
cement (remember that the add list represents the
expected effects which are produced during behavior
execution).
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M = m1 �
Xk

i = 0

eev, ð17Þ

where m1 is a positive reinforcement (by default + 100)
and k is the number of propositions defined by the add-
list of the activated behavior (abeh). eev is a function
that determines if the expected effect is included in the
current state (S(t)), in other words, it validates if the
condition 9 p 2 S(t) j p \ abeh 6¼ ; is true.

Ni: This term validates the delete-list efficiency of
each behavior. If the current state includes a percept
that corresponds to any delete-list’s proposition of any
behavior, the behavior will receive a negative reinforce-
ment (remember that the delete list represents the unex-
pected effects which should not be present during
behavior execution).

N = n1 �
Xk

i = 0

een ð18Þ

where n1 is a negative reinforcement (by default �200)
and k is the number of propositions defined by the
delete-list of the activated behavior (dbeh). een is a func-
tion that determines if the unexpected effect is not
included in the current state (S(t)), in other words, it
validates if the condition 9 p 2 S(t) j p \ dbeh = ; is
true.

Finally, the whole fitness for each BN is calculated
as

FFTi = FFSi + FFEi ð19Þ

All the elements of the function exert different (and
in some cases, opposing) evolutionary and selective pres-
sures. On the one hand, we have defined a function ele-
ment for each of the most typical structural problems
identified in behavior networks (such as terminating and
dead-end networks, monotone networks, nonconverging
acyclic networks, ambiguous and conflicting links, etc.).
On the other hand, we have defined a function element
for each kind of functional characterization of the beha-
vior network (such as goal orientedness vs. situation
orientedness, bias towards ongoing plans vs. adaptivity,
deliberation vs. reactivity, and sensitivity to goal con-
flicts). So the whole fitness function tries to model a
multi-objective problem where the most suitable solu-
tion will probably be found at an intermediate point.

4 Plan extraction

Another main contribution that our evolutionary
approach makes is the capability to extract plans as
HTN-like structures (HTN, hierarchical task networks;
Sacerdoti, 1977) as a result of the interaction among
behavior networks. In HTN planning, high-level tasks
are decomposed into simpler tasks until a sequence of
primitive actions solving the high-level tasks is

generated. If the decomposition is not possible (e.g.,
because of colliding restrictions), the planner back-
tracks and creates a different decomposition. However,
in our proposal we don’t use a backtracking mechan-
ism to infer a plan (which may be very expensive com-
putationally when the plan grows in size), but we
propose a mechanism that discovers a plan as an incre-
mental composition of elements, from low-order build-
ing blocks to high-order tasks: building blocks
(symbolic and subsymbolic rules) ! behaviors! beha-
vior networks! plans.2 Thus, the main contribution we
make in comparison with classic planners and meth-
odologies (such as HTN planning) is that our approach
does not need a priori definition of axioms, premises,
and operators to generate a complex hierarchical plan.

The hierarchical plan is encoded as a linear structure
of subtasks, which is evolved by GEP. Thus, a new plan
is built and executed as follows:

1. A new plan is generated randomly as a genetic lin-
ear structure (this will be explained later).

2. The genetic structure is translated into an expres-
sion tree as in Section 3.

3. The expression tree is translated into a HTN-like
structure.

4. The HTN-like structure is translated into an
ordered tasks sequence as a result of applying the
tree-traversal process in postorder.

5. Each subtask of the sequence is executed by a
corresponding BN. The activated BN starts the
spreading activation dynamics and selects an
executable behavior. Each behavior is activated
and the corresponding action is executed. The
process continues until the associated subgoal is
achieved by the BN.

6. After the BN achieves the subgoal, the next sub-
task is selected as indicated by the linear order of
the sequence (plan), and the process restarts in
the previous step. The plan execution finalizes
when there are no more subtasks to execute.

In order to extract and encode plans, we need to
introduce briefly three concepts: automatically defined
functions, homeotic genes, and cells. Automatically
defined functions (ADFs) were introduced by Koza
(1992) as a way of reusing code in genetic program-
ming. An ADF is an independent function or proce-
dure that is invoked by a main program as many times
as necessary. The way these ADFs interact with one
another and how often they are called upon is encoded
in special genes—homeotic genes—thus called because
they are the ones controlling the overall development
of the individual. And, continuing with the biological
analogy, the product of expression of such genes is
called a cell. Thus, homeotic genes determine which
genes are expressed in which cell and how they interact
with one another. Stated another way, homeotic genes

458 Adaptive Behavior 19(6)

 at University of Southampton on February 3, 2012adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


determine which ADFs are called upon in which main
program and how they interact with one another.

In Figure 2 we present a schematic representation of
a plan as a cell structure that is formed by multiple
ADFs and one homeotic gene. Each ADF corresponds
to one BN with distinctive topology and functionality;
in other words, every ADF is a multigenic chromosome
that defines a set of behaviors and the spreading activa-
tion dynamics between them in order to accomplish a
subgoal through the continuous reorientation of the
agent’s attention process. Thus, every ADF promises
to achieve a subtask of the plan.

The homeotic gene builds a hierarchical structure as
a HTN-like plan. Therefore, it defines how ADFs
(goal-oriented behavior networks), which are function-
ally independent from each other, interact through
cooperative and competitive relationships with each
other. In this way, the homeotic gene is able to control
which BN is activated in every moment and which one
is inhibited while the others cooperate in order to
achieve a set of goals and subgoals. As shown in Figure
2, each BN (ADF) has a different topology, different
set of goals, and different global parameters, and hence
each hierarchical structure plan (cell) is distinctive from
other plans (considering a multicellular system).

Homeotic genes have exactly the same kind of struc-
ture as conventional genes and are built using an identi-
cal process. They also contain a head and a tail domain.
In this case, the heads contain linking functions (so
called because they are used to link different ADFs)
and a special class of terminals—genic terminals—rep-
resenting conventional genes, which, in the cellular sys-
tem, encode different ADFs; the tails contain only genic
terminals.

It is worth pointing out that homeotic genes have
their specific length and their specific set of functions
and terminals. In our case, the homeotic gene uses the
connectivity functions D and T (which were explained
in Section 3.1) in order to link ADFs (terminals), and
each terminal is a node that represents the index of the
ADF in the corresponding cell. For instance, terminal
‘‘0’’ invokes ‘‘ADF 0,’’ terminal ‘‘1’’ invokes ‘‘ADF 1,’’
and so on. Figure 2a depicts a homeotic gene that
encodes the following genetic sequence (just the ORF
region): T-D-1-2-0-3. In Figure 2b, the plan is extracted
as an ordered task sequence as a result of applying the
tree-traversal process in postorder. Thus, the extracted
plan indicates that initially ADF0 (BN0) is executed;
when it finishes, ADF3 (BN3) is executed, then ADF1

(BN1), and finally ADF2 (BN2).

Figure 2. Plan encoding: (a) GEP cell encoding plans as HTN structures; (b) plan extraction.
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It is important to note that the adaptive mechanism
of these complex and hierarchical plans has an implicit
co-evolutionary process: the evolutionary development
of each separate decision-making structure (such as
behaviors and BNs) affects the building of high-order
cognitive structures such as plans. Co-evolution differs
from ordinary unimodal evolutionary algorithms in
terms of fitness function usage, because the evaluation
process is based on interactions between individuals, in
our case among BNs. Each BN represents a distinct
component of the problem which has to collaborate
with the others in order to construct an effective com-
posite solution. In other words, the fitness function is
nonstationary, but it is also based on the quality of co-
existing individuals representing different problem
components (De Jong & Pollack, 2004). Because the fit-
ness measure is specified relative to other BN (as indi-
viduals), the improvement of the quality of a partial
population triggers further improvements in other
populations. Intuitively, from Figure 2 it is also possi-
ble to infer that each agent has a set of cells (each one
modulating a hierarchical composite plan) which com-
pete with each other for the right to solve a specific
problem.

As a result, after a certain number of evolutionary
generations, valid and better adapted cells are gener-
ated inside the agent. A roulette-wheel method is used
to choose the cells with the most likelihood of selection
derived from their own fitnesses, and their components’
fitnesses (ADFs’ fitnesses). The cell’s fitness represents
how good the interaction with the environment was
during agent’s lifetime and is partially determined by
feedback signals from the environment and the evalua-
tion of a fitness function.

4.1 Fitness function and feedback signal for plans

The evaluation of how good every generated plan is, is
driven by two processes: (1) the internal simulation of
every plan (cell); and (2) the later evaluation of the fit-
ness function for every simulated plan.

For the internal simulation process we use an antici-
patory system that provides feedback about how opti-
mal a plan would be if it were executed in the agent’s
world. In other words, each plan (cell) is tested intern-
ally through multiple simulated loops; at each step, an
anticipatory system (driven by an anticipatory classifier
system; Butz, Goldberg, & Stolzmann, 2002;
Stolzmann, 1999) predicts the next state of the world
that has the highest probability of occurring. In the
anticipatory system, the structure of the stimulus–
response rules (classifiers) is enhanced by an effect part
representing an anticipation of the perceptive conse-
quences of its action on an environment (the agent’s
world). This effect part, associated with a learning pro-
cess called the anticipatory learning process (ALP),
enables the system to learn latently a complete internal

representation of the environment. The ALP represents
the application of the anticipatory behavioral control
into the system. Therefore, the anticipatory system
combines the idea of learning by anticipation with that
of the learning classifier systems framework (Booker,
Goldberg, & Holland, 1989).

The fitness function used to evaluate the performance
of each generated plan is based on a function of three
terms:

FFPi =
Reinforcementi � Costi

Durationi

ð20Þ

where FFPi is the fitness function for the simulated plan
i, and the other terms are described as follows.

Durationi: is the total period of time the simulated
plan would take if it was executed by the agent in the
world. This term is estimated as the sum of all pre-
dicted time responses that the agent would take for
every action.

Durationi =
Xn

i = 0

ALi, ð21Þ

where n is the number of steps (concrete actions) neces-
sary to achieve the target goal from the current state,
and AL is the number of activation loops that the BN
takes in every step to select an executable behavior
(remember that spreading activation dynamics can exe-
cute several loops before choosing an executable beha-
vior). As you can see, the duration function (Di) is
inverse to the reinforcement function (Ri); so, intui-
tively, the fewer activation loops are necessary to
achieve behavior activation, the stronger is the positive
feedback signal.

Reinforcementi: is the estimated net amount of feed-
back that the agent would collect if the plan was
executed:

Reinforcementi =
Xn

i = 0

Rbeh, i + RBN , i, ð22Þ

where Rbeh, i is the estimated net reinforcement that the
current activated behavior (selected by the BN in every
step i) receives after executing its action in the internal
simulation. RBN , i is the estimated net reinforcement that
every BN receives after executing the simulated plan.

Rbeh, i is a prediction that the anticipatory classifier
system makes about how much feedback (positive or
negative) would be received by the behavior after
executing its action. On the other hand, the RBN , i rein-
forcement corresponds to the evaluation of fitness
function for every BN (as discussed for Equation 19).

Costi: is the estimated cost if the plan was executed,
and is defined in terms of the amount of resources
and energy that the agent would require for every
action.
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Costi =
Xn

i = 0

Xr

j = 0

Eni, j, ð23Þ

where n is the number of simulated actions, r is the num-
ber of resources (actuators) that the agent would use to
carry out the action i, and Eni, j is the amount of energy
that would be required by the actuator j at action i. For
example, if the agent is a robot that has to move boxes
from one place to another, the costs required by the
robot in every execution step would depend on the num-
ber of actuators (e.g., an actuator to control the robot
speed, an actuator to control the turn rate, an actuator
to control a gripper, etc.) involved in every executed
action, and on the amount of energy that would be
needed to activate each one of these actuators. Note that
the cost function is an optional term for the fitness func-
tion and it has to be defined for each problem domain.
Therefore, the way these two processes (internal simula-
tion and fitness function) interact with each other in
order to validate a new plan is described as follows:

1. A set of plans (such as cells formed by ADFs) are
generated using GEP operators.

2. For Each plan, do:
2.1. The agent perceives the current state.
2.2. While the plan simulation has not achieved

the final goal, do:
2.2.1. The corresponding BN (determined

by the sequential order of the plan)
is activated.

2.2.2. The winner behavior, which has
been selected by the spreading acti-
vation dynamics of the activated
BN, is executed.

2.2.3. The action that proposed the acti-
vated behavior is executed into the
(internal) simulated environment.

2.2.4. The statistics described above
(duration, cost, and reinforcement)
are updated.

2.2.5. A new prediction of the next state is
generated by the anticipatory system.

2.2.6. If it is possible to make a prediction of
the world’s next state, the external sen-
sory input is replaced by the prediction
and the loop continues with step 2.2.1,
otherwise, the simulation stops.

2.3. End While.
3. End For Each.
4. The overall fitness function for each plan (FFP

from Equation 20) is computed (taking into con-
sideration all the feedback signals).

5. The plan with the highest fitness is selected:

bestPlan = maxj(FFP(j, i)) ð24Þ

6. The selected plan is executed by the agent.

5 Experimentation

In order to evaluate the proposed evolutionary
decision-making model, the following aspects were
considered:

1. Convergence rate of evolutionary structural
design of BNs.

2. Comparison of convergence rates of evolutionary
functional design of BNs using multiple experi-
mental cases.

3. Convergence rate of evolutionary design of plans.

A simulated robotic environment was proposed to
test the experiments. In the simulated environment, the
robot had to collect different kinds of objects and then
deliver them to specific storage boxes. The robot had
to coordinate different kinds of tasks such as object
search, object recognition, route planning, obstacle
avoidance, battery recharging, object piling up, and so
forth.

The simulated robotic environment was designed
using the Player/Stage platform.3 Stage simulates a
population of mobile robots moving within and sensing
a two-dimensional bitmapped environment. Various
sensor models are provided, including sonar, scanning
laser rangefinder, pan-tilt-zoom camera with color blob
detection, and odometry. In our simulation the robot
(agent) was provided with four kinds of sensor inter-
faces: sonar sensors, gps sensor, laser sensors, and fidu-
cial sensors; and two kinds of actuator interfaces:
position interface and gripper interface.

The sonar interface provides access to a collection of
fixed range sensors, such as a sonar array. The gps
interface provides access to an absolute position sys-
tem, such as GPS. The laser interface provides access to
a single-origin scanning range sensor, such as a SICK
laser range-finder. The fiducial interface provides access
to devices that detect coded fiducials (markers) placed
in the environment. These markers work as reference
points (fixed points) within the environment to which
other objects can be related or which objects can be
measured against. The fiducial sensor uses the laser sen-
sor to detect the markers. The position interface is used
to control a planar mobile robot base (i.e., it defines the
translational and rotational velocities). The gripper
interface provides access to a robotic gripper (i.e., it
allows the robot to grasp and release objects). Figure 3
shows some of the robot interfaces used.

5.1 Convergence rate of evolutionary structural
design of BNs

This experiment shows how the topological structure of
BNs can be evolved through the GEP algorithm pro-
ducing a new set of refined and syntactically well-
formed structures. In order to find the adaptation rate
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of evolved BNs, we proposed a target BN that
achieves two global goals of the agent: Collect-All-
Boxes and Maintain-Energy. The main idea of this
experiment is that the robot has to collect all the
boxes, which are scattered everywhere in the world,
and put them down at the corresponding storage,
while also avoiding surrounding obstacles and rechar-
ging the battery every time that it runs out of energy.
The agent has to learn all the relationships between
behaviors (activation and inhibition links) in the BN.
Figure 4 depicts the world used in the experiment and

the target BN that the robot had to discover through
the evolutionary process.

We proposed a population of 100 BNs. Each individ-
ual BN was represented by a multigenic chromosome
that was composed of seven behavioral genes (one for
each behavior of the net), where each gene had a length
of 30 elements (i.e., head length = 10 and tail length =
20), and one functional gene with a length of 5 ele-
ments (one for each global parameter). Thus, the whole
chromosome has a length of 215 alleles (i.e., 30 �
7 + 5). The GEP parameters were defined both through

Figure 3. Robot interfaces.

Phenotype translation

Behavior Preconditions Add-list Delete-list

Behavioral gene 0: B1-
D-P1-P2-P8-P2-P1-P1-
P4-P1

LOOK-FOR-STORAGE (B1) No-Obstacles
No-Identified-Storage

Identified-Storage No-Identified-
Storage

Behavioral gene 1: B2-
T-P5-D-D-D-P1-P2-P6-
P8-P12-P6-P9

LOOK-FOR-BOX (B2) Identified-Storage
No-Obstacles
No-Full-Storage
No-Identified-Box
With-Battery

Identified-Box No-Identified-
Storage
No-Identified-Box

Behavioral gene 2: B3-
T-P11-D-P5-D-D-P14-
P12-P8-P1-P9-P13

PICK-UP-BOX (B3) Identified-Box
No-Obstacles
Identified-Storage
With-Battery
No-Stored-Box

Grasped-Box No-
Grasped-Box
No-Stored-Box

Behavioral gene 3: B4-
D-M1-P13-D-D-P9-
P11-P1-P8

STORE-BOX (B4) With-Battery
Grasped-Box
Identified-Storage
No-Obstacles

Collect-All-Boxes No-Stored-Box

Behavioral gene 4: B5-
P7-P8-null

AVOID-OBSTACLES (B5) Obstacles No-Obstacles null

Behavioral gene 5: B6-
D-P3-P4-P4-P8

LOOK-FOR-BATTERY
-CHARGER (B6)

No-Identified-
Battery-Charger
No-Obstacles

Identified-
Battery-Charger

No-Identified-
Battery-Charger

Behavioral gene 6: B7-
D-D-D-P3-D-P9-M2-
P4-P10-P8-P10

RECHARGE-BATTERY (B7) Identified-
Battery-Charger
No-Obstacles
No-Battery

With-Battery
Maintain-Energy

No-Identified-
Battery-Charger
No-Battery

Functional gene 0: 18-
42-87-91-46

π = 19, θ = 43, φ = 88,
δ = 92, and γ = 47
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empirical adjustments obtained in previous experiments
(Romero & de Antonio, 2008, 2009a, 2009b) and on the
basis of theoretical ranges (Ferreira, 2006; Koza, 1992;
Poli et al., 2008). Table 1 summarizes the GEP para-
meters used in the experiment.

Figure 5 shows the progression of the mean fitness
of the population and the fitness of the best

individual over 500 epochs. Note that the results of
this experiment were obtained for a harmonic mean
value for 100 runs. In other words, the experiment
was run 100 times from identical starting data, and in
every run it was executed for 500 evolutionary
epochs. In every epoch, all the BNs of the population
were evaluated using the fitness function in Equation

Figure 4. Contextual domain: (a) box-collecting world; (b) target BN for box-collecting task.
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20; however, no plan execution was performed in this
experiment.

It is worth noting that all the runs for the evolution-
ary process found a perfect solution (that is, a solution
that represented a net topology as shown in Figure 4b)
in a range between 259 and 283 epochs. After the sys-
tem reached a global optimum, it maintained itself in a
steady state for all the remaining epochs.

In Figure 5, the graph for mean fitness (i.e., the
average fitness for the whole population of BNs)
suggests different evolutionary dynamics for GEP
populations. The oscillations of mean fitness, even
after the discovery of a perfect solution, are unique to
GEP. The oscillation is due in part to the small

population size used to solve the problem presented in
this work, and in part to the degree of diversity that
injects both mutation and recombination genetic
operators.

Table 2 summarizes the statistical data from this
experiment. Mean square error (MSE) measures the
average of the square of the ‘‘error.’’ This error is the
amount by which the estimator differs from the
quantity to be estimated, and in our case, corresponds
to the average number of topologically invalid BNs
produced by every evolutionary epoch. From the
results, notice that the MSE of the best fitness curve is
almost 56% lower than that of the mean fitness curve
½1� (MSEbest=MSEmean)�.

Table 1. GEP parameters for BN development (evolutionary process).

Parameter Value Parameter Value

Number of runs 100 Mutation rate 0.05
Number of generations (epochs) 500 One-point recombination rate 0.2
Population size 100 Two-point recombination rate 0.4
Number of behavioral genes 7 IS transposition rate 0.2
Number of functional genes 1 RIS transposition rate 0.1
Head length of behavioral genes 10 Global parameter (GP) mutation rate 0.05
Head length of functional genes 5 GP one-point recombination rate 0.25
Chromosome length 215 GP two-point recombination rate 0.45

Figure 5. Behavior of the GEP population best and mean fitnesses during the evolutionary epochs.

Table 2. Statistics for BN structural evolution.

Min. value Max. value Average SD Variance MSE

Mean fitness 21 578 446.87 66.77 4459.14 85.73
Best fitness 45 847 790.28 97.13 9435.87 48.87
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The BN structure (chromosome) found by the best
solution had the following genotype and phenotype (for
simplicity, only the head segment is shown for every gene):

In spite of getting a good solution for the box-collect-
ing task, the evolutionary process found some alterna-
tive solutions whose genes improved the target solution
initially proposed. Nevertheless, these genes were found
dispersed in chromosomes that were not totally opti-
mized; therefore, the BN chromosome shown above
remained the best solution for the problem because it
allowed the system to be in a steady state for almost
250 epochs, meaning that the BN encoded by the best
chromosome reached a state where no negative reinfor-
cement was received by the robot.

An interesting example of these alternative solutions
is a behavioral gene that included the ‘‘No-Battery’’
proposition in the add-list of STORE-BOX behavior,
which means that the robot would probably run out of
energy after leaving the grasped box at its correspond-
ing storage. This simple variation may cause the robot
to avoid interrupting the execution of STORE-BOX
behavior the next time it finds a box (e.g., if the robot
decides to release the grasped box and recharge battery
instead of storing the box when it runs out of energy,
the STORE-BOX behavior would be interrupted).
Therefore, this new proposition guarantees that the
robot checks the energy level after storing a box, and if
it is low the RECHARGE-BATTERY behavior will
receive more activation energy from the STORE-BOX
behavior; otherwise, the LOOK-FOR-BOX behavior
will receive more activation energy. Thus, the robot
would always complete the box-collecting task success-
fully because it would never run out of energy between
the execution of the PICK-UP-BOX and STORE-BOX
behaviors. It is worth noting that this additional propo-
sition, as well as other propositions defined by different
genes, were not expected to appear in the target solu-
tion, so we can consider them as emergent properties
produced by the evolutionary process.

5.2 Comparison of convergence rates of
evolutionary functional design of BNs using
multiple experimental cases

In order to measure the convergence rates of different
aspects of the evolutionary functional design of BNs, we
proposed various experimental cases where global para-
meters were continuously adapted to the situations.

� Case 1: this case measures the adaptation rates
of the goal-orientedness versus situation-
orientedness aspects of BNs. In this experiment,
the robot senses one orange box and seven green
boxes around it, where \Collect-All-
Orange-Boxes. is the current goal. In spite of
the fact that the robot receives more activation

energy from the situation (i.e., the seven green
boxes), it must learn to pursue current goals and
avoid changes of attention focus (e.g., it must
focus on collecting orange boxes instead of col-
lecting green boxes). See Figure 6.

� Case 2: this case measures the adaptation rates of
the deliberation versus reactivity aspects of BNs.
Initially, the robot has to store an observed box in
a specific storage and to achieve this it has to gra-
dually accumulate activation energy and sequen-
tially activate a set of behaviors which accomplish
the \Store-Box. goal (deliberation). During
the task execution, an unexpected situation is pre-
sented to the robot: some obstacles are dynami-
cally moved around, so the robot has to react
with a timely evasive action (reactivity) and retake
the control after that. See Figure 7.

� Case 3: this case measures the adaptation rates of
bias towards the ongoing plans versus adaptivity
aspects of BNs. In this experiment the robot has
to store a box in a storage situated at a specific
point in the environment. The robot has to make
a plan in advance in order to achieve the
\Store-Box. goal. When the robot gets close
to the storage, the latter is displaced to another
location, so the robot is unable to store the box
and has to start looking for the new storage loca-
tion. The aim of this experiment is to validate the
speed of the best evolved BN to replan a new
problem-solving strategy in runtime. See Figure 8.

� Case 4: this case measures the adaptation rate of
the sensitivity to goal conflicts aspect of BNs. In
this experiment we take into account the anoma-
lous example situation of the block world
(Sussman, 1975). In this classical conflicting-goals
example there are three blocks (A, B, and C)
which must be piled up in a specific order. The
initial state of the world is S(0) = (\clear-
B., \clear-A., \A-on-C.) and the goals
are G(0) = (\A-on-B., \B-on-C.). The
robot should first achieve the goal \B-on-C.

and then the goal \A-on-B.. It is tempted,
however, to immediately stack A onto B which
may bring it into a deadlock situation (not want-
ing to undo the goal already achieved). Some of
the behaviors used for this experiment were:
\stack-A-on-B., \stack-B-on-C., and
\take-A-from-C.. See Figure 9.

Figure 10 shows the convergence curves for the experi-
mental cases 1, 2, 3, and 4 using the harmonic mean
value for 100 runs. It is important to note that the evolu-
tionary process converged for all cases, although not
always at the same speed. The convergence speed for case
4 was slower because the GEP algorithm had to adjust
all the global parameters, whereas in the other cases it
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Figure 6. Case 1: (a) the robot senses an orange box; (b) the robot activates \Pick-up-orange-box. behavior; (c) the robot
senses other seven ‘‘green’’ boxes; (d) the robot does not change the attention focus even though it receives more activation
from the situation (the seven green boxes). GBS = green box storage, OBS = orange box storage.

Figure 7. Case 2: (a) the robot reactively avoids a moving obstacle in front of it while it is carrying a box; (b) the robot finally stores
the box in spite of multiple distracting obstacles.

Figure 8. Case 3: (a) the robot is transporting a box to the storage; (b) the location of the storage is moved, so the robot changes
its initial plan (dropping the grasped box and starting to look for the new location of the storage); (c) after the robot finds the new
location of the storage it retakes the \LOOK-FOR-BOX. behavior and then stores the box.

466 Adaptive Behavior 19(6)

 at University of Southampton on February 3, 2012adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


only needed to adjust some parameters: p, g, and f for
case 3; u, g, and f for case 2; and g and f for case 1.

Table 3 shows the statistical data from the experi-
ments. The CE (convergence epoch) column indicates
the mean epoch when the algorithm converged in every
experiment. The MSE is the mean square error for 100
runs of the corresponding experiment, where an error is
considered as a wrong behavior activation produced in
every execution step by the behavior network (in the
MSEgep column the BN with the best fitness generated by
the GEP algorithm is used and in the MSEmaes column
the original Maes BN model without an evolutionary
mechanism is used). The MSE rate presents the perfor-
mance relationship between MSEgep and MSEmaes. It is
important to note that, for the experiments executed, the
proposed evolutionary BN model improves the perfor-
mance results obtained by the original Maes BN model
by between 58% and 69%. This improvement is due to
the capability of the proposed evolutionary BN model to
self-adjust the global parameters in runtime, whereas the
original Maes BN model was always restricted to a fixed
configuration of these parameters.

For all the experiments, the original Maes BN model
was configured with the following fixed global para-
meters: d = 90, g = 50, f = 90, p = 90, and u = 100. In
contrast to these fixed values, Table 4 shows the global
parameters discovered by the proposed evolutionary
mechanism for each experimental case. From these
results arise the following observations:

Case 1: the proposed evolutionary mechanism discov-
ered that in order to keep the balance between the ‘‘goal-
orientedness’’ and ‘‘situation-orientedness’’ aspects, g must
be approximately 29–34% greater than f. For a very high
value of g or a very low value of f, the agent (robot) could
not adaptively redirect its attention focus towards more
interesting goals when they were presented.

On the other hand, a value of f greater than g would
prevent the robot achieving any of the goals because it
would be continuously changing its attention focus.

Case 2: the proposed evolutionary mechanism found
that in order to keep the balance between the ‘‘delibera-
tion’’ versus ‘‘reactivity’’ aspects, the value of f must be a
little higher than g (approximately 9–15%). With this con-
figuration the agent was not only able to keep its attention

focused on current goals, but was also able to react against
unexpected or dangerous situations. Additionally, when
reactive behavior was required, the proposed evolutionary
mechanism discovered that a low value of u allowed fast
behavior activation because the BN took fewer activation
loops and, as a consequence, the amount of deliberative
processing was considerably decreased.

Case 3: the proposed evolutionary mechanism
revealed that in order to keep the balance between the
‘‘bias towards ongoing plans’’ versus ‘‘adaptivity’’
aspects, the value of p must be approximately 46–52%
greater than g, and 72–77% less than f. If these global
parameters are kept between such ranges, the agent will
not continually ‘‘jump’’ from goal to goal and in turn it
will be able to adapt to changing situations. From the
wrong solutions it is possible to infer that a value of p

too much greater than g and f makes the BN more
adaptive, although less biased towards ongoing plans,
hence the agent will continually be changing the current
goals without keeping the focus on any of them.

Case 4: the proposed evolutionary mechanism discov-
ered that in order to preserve the ‘‘sensitivity to goal con-
flicts,’’ the value of d must be approximately 51–65%
greater than g; if it is less than 50% greater the BN does
not take away enough activation energy from conflicting
goals. A value of g greater than d causes the BN to go
into deadlock due to the inability of the BN to undo
goals already achieved. Furthermore, the evolutionary
mechanism found that the value of f must be approxi-
mately 62–73% greater than d, otherwise the BN will not
be able to activate the behavior sequence that resolves
the goal conflict (i.e., \take-A-from-C., then
\stack-B-on-C., and then \stack-A-on-B.)
because it will not receive enough activation from the
observed state. Finally, the evolutionary mechanism
revealed that in conflicting goal situations the value of u

must be less than d, otherwise the BN will be more delib-
erative and, therefore, it will execute more activation
loops during which the behaviors that promise to directly
achieve a goal (e.g., \stack-B-on-C. and\stack-
A-on-B.) will accumulate more activation energy than
those behaviors that solve conflictive goals through sub-
goaling (e.g.,\take-A-from-C.).

From the results obtained in the above experiments,
it is evident that setting global parameters is a ‘‘multi-
objective’’ problem, hence a single BN solution cannot
define a proper setting for all the proposed experimen-
tal cases. So, the solution to this problem requires mul-
tiple BNs competing for survival in the population,
where only the best BN will be activated according to
the situation observed by the agent.

5.3 Convergence rate of evolutionary
design of plans

In this experiment we proposed two different tasks
that the robot had to accomplish. The first was the

Figure 9. Case 4: (a) initial and final states of block world prob-
lem; (b) deadlock situation that avoids undoing the goal already
achieved \A-on-B..
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box-collecting task described in Section 5.1, and the sec-
ond was a task in which the robot had to learn how to
stack boxes on top of each other following specific
order criteria (very similar to the Hanoi towers prob-
lem). The basic idea of the problem is as follows: the
robot has to collect different kinds of boxes (orange
and green boxes), which are scattered everywhere, and
to store them in the corresponding storage. The boxes

Figure 10. Behavior of the GEP population best and mean fitnesses during the evolutionary epochs for Cases 1, 2, 3, and 4.

Table 3. Statistics for BN functional evolution. CE is the convergence epoch of the curve. MSEgep is the mean square error of the
case using the GEP algorithm. MSEmaes is the MSE using only the original Maes BN model. MSE rate is equivalent to
½1� (MSEgep=MSEmaes)�.

Min. Max. Average SD CE MSEgep MSEmaes MSE rate

Case 1 27 437 416.10 70.90 15 45.78 118.03 61.21%
Case 2 35 472 455.44 69.10 9 41.39 98.36 57.91%
Case 3 28 573 515.18 137.73 21 56.15 145.87 61.50%
Case 4 53 683 629.01 143.98 27 73.02 233.28 68.69%

Table 4. Evolved global parameters.

d g φ p y

Case 1 85 68 23 92 95
Case 2 87 57 64 93 15
Case 3 88 37 61 18 93
Case 4 48 17 63 18 41
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are piled up one on top of another in the same order
that the robot finds them. After all boxes are stored,
the robot has to stack, in an ordered manner, all the
collected boxes in every storage.

Figure 11a shows the environment used for the
experiment. There were five green boxes (a, b, c, d, and
e) and six orange boxes (f, g, h, i, j, and k). Figure 11b
depicts an example where, given a set of stored boxes
that were first stacked in a random order, the robot
restacked them, this time following an ordered criteria
(a-on-b, b-on-c, and so on).

Finally, Figure 11c depicts a partial segment of the
BN for the box-stacking task. In our implementation we
used variables for the box-stacking BN, so the robot was
able to reuse the behaviors in different situations. So,
for example, ‘‘Stack-x-on-y’’ behavior receives two vari-
ables (x and y) which can be any of the stored boxes.

The final aim of the experiment was that the robot
had to generate a plan whose duration (in terms of exe-
cution steps) was optimized. Thus, the robot had to
minimize both the total number of execution steps nec-
essary to collect all green and orange boxes, and the

number of execution steps to organize and stack (in an
ordered manner) all the stored boxes.

It is important to note that both kinds of BNs used
in this experiment were previously evolved by the robot
with the purpose of focusing just on the planning prob-
lem and speeding up the solution convergence.
Additionally, before this experiment, the robot per-
formed a training phase where it got specific knowledge
about where every box and storage in the world was
situated. Table 5 summarizes the GEP parameters used
in the evolutionary process for generating plans.

During the evolution of each ADF, the robot gener-
ated two BNs with different structural and functional
features. That make sense because, on the one hand, the
BN for the box-collecting task needs: (1) to be more
oriented to situations than to goals, that is, the behavior
selection must be driven by what is happening in the
environment; (2) to be more adaptable rather than biased
to ongoing plans, so the robot can exploit new opportu-
nities, be more fault tolerant, and adapt to dynamically
changing situations such as the sudden need to recharge
the battery because it has run out of energy, or the need

Figure 11. Planning problem: (a) box-collecting world; (b) box-stacking sample; (c) partial BN for the box-stacking task.
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to replan because it finds a better solution in runtime;
and (3) to be more deliberative (thoughtful) than reac-
tive, because the robot has to plan all its movements
towards whichever box and storage before starting mov-
ing. On the other hand, the BN for box-stacking task
requires: (1) to be more oriented to goals than to situa-
tion because the environment is not affected by meaning-
ful external changes while the robot is stacking the boxes;
(2) to be more biased to ongoing plans rather than adap-
table, so the robot can address behavior activation to the
ongoing goals and subgoals of the task without a signifi-
cant interference of external changes; (3) to be more sus-
ceptible to avoiding goal and subgoal conflicts through
the arbitration of behavior activation; and (4) to be more
deliberative than reactive. All of these characteristics
were evolved through the runtime adjustment (adapta-
tion) of global parameters, as summarized in Table 6.

Note that in order to avoid very long plan simula-
tions we used a simple criterion that prunes the space
of simulations and improves the overall performance.
So, we evaluated plans trivially: ‘‘at every epoch, all the
plans are simulated concurrently using an independent
processing thread for each plan; therefore, the first
simulated plan to finish must be the route that takes
least execution steps and time (duration) to traverse,
and all the others could be aborted without loss.’’ Thus,
in Figure 12 we only present the curve for the best plan
found in every epoch.

Table 7 summarizes the statistical data from this
experiment. The error of MSE corresponds to every
plan whose fitness is negative after being evaluated by
Equation 20 in every evolutionary epoch. Note that the
best fitness reduces the MSE of the mean fitness curve
by 64.38% (½1� (MSEbest=MSEmean)�).

Figure 12 shows the progress in time of the harmonic
mean value for 100 runs of the best simulated plan (the
one which took least execution steps to find a solution in
every epoch). The robot found (on average) an optimized
solution after epoch 400. In the plot, the harmonic mean
value for the optimized solution converged at epoch 417
and took 576 execution steps. The optimized plan discov-
ered by the evolutionary process is described next.

The homeotic gene (which is responsible for building
deliberative plans as ordered-task sequences) uses two
function nodes (T and D connectivity functions) and
four terminal nodes that are connected to a specific
ADF (ADF1, green-box-collecting BN; ADF2, orange-
box-collecting BN; ADF3, stack-green-boxes BN; and
ADF4, stack-orange-boxes BN). Both ADF1 and ADF2

receive a parameter in order to focus the spreading acti-
vation dynamics of their corresponding BN. For exam-
ple, if ADF1 received parameter a, it would mean that
the BN would pursue the \store-a-box. subgoal;
if ADF2 received parameter f , it would mean that the
BN would pursue the \store-f-box. subgoal, and
so on. We can extract the corresponding plan as a
sequence of ordered tasks obtained after applying the
tree-traversal process in postorder on the ET of Figure
13, as follows:

Best Plan: [[ADF2:k] [ADF1:a] [ADF1:d]
[ADF1:e] [ADF1:c] [ADF2:j] [ADF2:f] [ADF2:h]
[ADF2:g] [ADF1:b] [ADF3] [ADF2:i] [ADF4]]

Translation:
Task 1: pick up ‘‘k’’ box and store it at

orange storage
Task 2: pick up ‘‘a’’ box and store it at

green storage
Task 3: pick up ‘‘d’’ box and store it at

green storage
Task 4: pick up ‘‘e’’ box and store it at

green storage
Task 5: pick up ‘‘c’’ box and store it at

green storage
Task 6: pick up ‘‘j’’ box and store it at

orange storage
Task 7: pick up ‘‘f’’ box and store it at

orange storage

Table 5. GEP parameters for plans development (evolutionary process).

Parameter Value Parameter Value

Number of runs 50 Mutation rate 0.1
Number of generations (epochs) 500 One-point recombination rate 0.3
Population size (plans) 50 Two-point recombination rate 0.5
Number of ADFs 4 IS transposition rate 0.3
Number of homeotic genes 1 RIS transposition rate 0.3
Head length of homeotic gene 10

Table 6. Global parameters.

Parameter Value for
box-collecting BN

Value for
box-stacking BN

p 25 19
y 87 39
φ 53 65
d 92 46
g 3 20

470 Adaptive Behavior 19(6)

 at University of Southampton on February 3, 2012adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Task 8: pick up ‘‘h’’ box and store it at
orange storage

Task 9: pick up ‘‘g’’ box and store it at
orange storage

Task 10: pick up ‘‘b’’ box and store it at
green storage

Task 11: stack stored green boxes in a
downward order

Task 12: pick up ‘‘i’’ box and store it at
orange storage

Task 13: stack stored orange boxes in a
downward order

It is important to notice that this structure corre-
sponds to a meta-plan sequence, that is, it defines the
global tasks that the robot has to execute in the world,
but it does not define the fine-grained tasks and actions
because these are determined by every behavior and
behavior network during the simulation and/or execu-
tion of the plan. For example, between the execution of
tasks 3 and 4, the robot activated the recharge-battery
behavior (and all the corresponding actions) before
picking up ‘‘e’’ box which was close to the battery
recharger (see Figure 14d). If the robot had decided to
recharge the battery afterwards, it would probably have
needed to travel a longer distance and, therefore, to
perform too many more execution steps. Similarly, the
recharge-battery behavior was activated before picking
up ‘‘h’’ box.

After the best simulated plan was found, the robot
executed it on the world. It is worth mentioning that
there was not a large difference between the simulated
plan and the executed plan: whereas the simulated plan
estimated 576 execution steps, the executed plan took
653 real execution steps. This difference was mostly due
to obstacle-avoidance actions that were improvised by

Table 7. Statistics for plan evolution.

Min. value Max. value Average SD Variance MSE

Mean Fitness 20 1948 1330.98 351.96 123878.54 345.67
Best Fitness 53 5126 4372.07 888.15 788810.76 123,12

Figure 12. Evolutionary convergence curve for the population of plans: (a) behavior of the GEP population best and mean fitnesses
during the evolutionary epochs; (b) best plan convergence curve.

Figure 13. Expression tree for the homeotic gene of the opti-
mized plan. T and D are connectivity functions. {a, b, c, d, e} are
terminal nodes that correspond to the green-box-collecting BN
(ADF1). {f, g, h, i, j, k} are terminal nodes that correspond to the
orange-box-collecting BN (ADF2). ADF3 is the stack-green-
boxes BN, and ADF4 is the stack-orange-boxes BN.
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the robot along the way. The step-by-step plan executed
by the robot is presented in Figure 14.

6 Conclusions

In this article we have described a hybrid decision-
making approach for autonomous agents that is sup-
ported by the robustness of both the behavior networks
model and gene expression programming. The pro-
posed model is able to adaptively build complex
decision-making structures as a result of interacting
evolutionary dynamics.

Specifically, the proposed evolutionary model focuses
on the on-line ‘‘development’’ of both behavior networks
as task-oriented decision-making structures, and plans as
hierarchical complex decision-making structures. Behavior
networks have been proposed in previous works
(Franklin, 2006; Maes, 1989; Shanahan & Baars, 2005) as
‘‘control mechanisms for selective focusing of attention,’’
and we tried to follow the same philosophy in our
approach. However, we argue that this kind of decision-
making structure must have the capacity of being adapta-
ble and flexible throughout the agent life cycle, instead of
being a pre-wired, hand-coded, and fixed structure. Thus,
we proposed an evolutionary mechanism based on GEP
which evolves the BNs depending on both the dynamic
environmental interactions experienced by the agent and
the internal changing states of itself. From the experimen-
tation, it is possible to infer that the evolutionary
approach was able to evolve different kinds of BNs. This
diversity can be seen from both a structural perspective
(e.g., diverse net topologies determined by varying rela-
tionships of competition and cooperation among beha-
viors), and a functional perspective (e.g., different global
parameters configurations determine diverse features of
BNs such as goal orientedness vs. situation relevance,
adaptivity vs. bias to ongoing plans, deliberation vs. reac-
tivity, sensitivity to goal conflicts, etc.).

We also demonstrated how the evolutionary process
was able to generate more complex decision-making
structures (plans) through the emergent assembly of
simpler ones. At this point, it is worth highlighting four
main advantages of this mechanism to generate plans in
comparison with classic planning solvers: (1) our plan-
ning mechanism does not require a priori hand-coded
programs that define all the formal semantics of a plan
(such as sets of axioms, methods, premises, and opera-
tors, large search spaces, complex search algorithms,
etc.), as classic planners usually do (e.g., STRIPS and
HTN planners); (2) as a consequence of the previous
advantage, our evolutionary plan generation model is
an emergent process which discovers the best solution
in runtime execution, and even though the plan fits into
the problem domain, the ‘‘planning mechanism’’
whereby complex plans are built is completely indepen-
dent from it; (3) the best plan found by the simulation

process is closely similar to the real execution of the
plan because it predicts (with some degree of accuracy)
all the actions that the robot has to execute considering
both the current environmental conditions and the
dynamic changes that could happen during the perfor-
mance, and thus it allows the robot to act accordingly;
and (4) the generated plan is not a rigid and fixed plan,
but it is flexible enough to allow the replanning process
(as a consequence of the spreading activation dynamics
of the BNs) throughout runtime execution.

In our approach it is possible to identify several lev-
els of planning: (1) short-term planning carried out by
the anticipatory classifier system and behaviors, which
predicts the outcomes of actions executed in the prior
state, so the agent can react opportunely; (2) medium-
term planning driven by spreading and accumulation
of energy dynamics of BNs, through which a set of
expectations, goals, and subgoals are pursued; and (3)
long-term planning produced by homeotic genes, which
defines the agent acting in terms of high-level task
sequences, and which drives the global behavior of the
agent towards the achievement of more general (global)
goals. All these levels allow the agent to exhibit a delib-
erative behavior focused on goals achievement,
although with the ability to reactively replan and
change the course of action when (internal and exter-
nal) perturbations from state require it. Therefore, it is
the system that is in charge of producing its own plans,
mentally executing them (through internal simulation),
checking against its real world execution and, more
importantly, evolving them over time with the feedback
received.

7 Future work

In our future work we will continue working on design-
ing a more adaptive and self-configurable decision-
making model, incorporating emotional and meta-
cognition modules. One concrete application of this
research will be the development of a module for emo-
tive pedagogical agents where the agent will be able to
self-learn perspectives, beliefs, desires, intentions, emo-
tions, and perceptions about itself and other agents,
using the proposed approach.

Currently, our approach uses a basic motivational
model based on drives, but we hypothesize that using a
more sophisticated model (e.g., one that includes affec-
tive states, frames of mind, personality features, moods,
emotions, etc.), from which new inputs to the behavior
networks can be generated, will make the agent’s per-
formance more believable. Thus, the GEP process will
have to take these new inputs into account in order to
address the evolution of better and more complex beha-
vior networks.

In the current approach, the initial set of modules of
behavior networks must be defined a priori and the
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Figure 14. Best plan: (a) collect ‘‘k’’ box; (b) collect ‘‘a’’ box; (c) collect ‘‘d’’ box; (d) recharge battery; (e) collect ‘‘e’’ box; (f) collect
‘‘c’’ box; (g) collect ‘‘j’’ box; (h) collect ‘‘f’’ box; (i) recharge battery and collect ‘‘h’’ box; (j) collect ‘‘g’’ box; (k) collect ‘‘b’’ box and stack
green boxes; (l) collect ‘‘i’’ box and stack orange boxes.
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GEP process is in charge of connecting them. However,
our goal is to find a mechanism that can propose new
behaviors from interaction between the agent and its
environment, so no pre-definition of this set will be
required. After that, this mechanism could refine the
inferred behaviors set through generalization and spe-
cialization processes, and validating them during execu-
tion time. Then, behaviors can be interconnected to
other existing behaviors using GEP.

Finally, we want to add a new hierarchical level of
knowledge: the macro-plans. As we explained in Section
4, plans are encoded as a set of ADFs and one homeo-
tic gene, which constitute a cell. We hypothesize that
expanding the number of homeotic genes, using a
multi-cell approach, will allow the creation of macro-
plans. Every homeotic gene will specify different activa-
tion conditions of the plan (e.g., if proposition ‘‘x’’ is
true then execute plan ‘‘A,’’ otherwise, if proposition
‘‘b’’ is true then execute plan ‘‘B’’.). Therefore, every
homeotic gene will encapsulate the execution of a
micro-plan, and there will be a master homeotic gene in
charge of invoking neither ADFs nor BNs but other
homeotic genes.

Notes

1 These processing modules (or behaviors) have been
explained in our previous work (Romero & de Antonio,
2008, 2009b) and consist of hybrid components made of
production rules, neural networks, and artificial immune
systems.

2 Behaviors and rule processing are explained in previous
work (Romero & de Antonio, 2008, 2009b).

3 The open source platform is available at http://playersta-
ge.sourceforge.net/.
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